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An approach for clustering sensor nodes by data similarity
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Abstract. In Wireless Sensor Networks, data aggregation is a crucial task since
it is capable of reducing the network traffic, increasing the overall network life-
time. However, most works consider aggregation when nodes are close to each
other since the common assumption is that if a set of sensor nodes are physically
close to each other, they produce highly correlated data. Nevertheless, the fact
that nodes are close to each other does not guarantee data correlation in order
to perform aggregation. Hence, the objective of this paper is to present Akasen
to clusters sensor nodes based on the data similarity. Results from experiments
in IntelLab dataset show that the Akasen reduces energy consumption by 5.5X,
providing a solution to be considered in wireless sensor networks scenarios.

1. Introduction

Wireless Sensor Networks (WSN) consist of a large set of small electronic devices, called
sensor nodes, capable of sensing and transmit (usually by a wireless transceiver) envi-
ronmental variables, such as temperature, humidity, light and so on [Rawat et al. 2014].
Considering that sensor nodes are usually battery-powered, the energy consumption im-
poses severe restrictions on this kind of network. Since the transceiver requires more
energy than sensing activities, some researches on the literature have directed studies to
reduce the overall data traffic generated by the sensors nodes [Jiang et al. 2011].

As many applications are related to the periodic monitoring, and it is well known
that, in such scenarios, redundant data may be sent by sensor nodes [Carvalho et al. 2011],
most works in literature consider data aggregation to reduce the overall traffic
[Kridi et al. 2016], [Gielow et al. 2015] and [Kim et al. 2014]. In these works, aggrega-
tion occurs when nodes are close to each other, exploiting the spatial correlation between
them. The common assumption is that if a set of sensor nodes are physically close to each
other, they produce highly correlated data [Karasabun et al. 2013]. However, the fact that
nodes are close to each other does not guarantee data correlation in order to perform ag-
gregation. To exemplify that observation, consider the temperatures taken from the Intel
Lab project dataset'. Figure 1 compares the correlation of temperature of one sensor node

"http://db.csail.mit.edu/labdata/labdata.html
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Figure 1. Correlations between node
1 and others sensor nodes, from Intel
Lab dataset. The black line shows a de-
sired threshold. Notice that even dis-
tante nodes are correlated.

Figure 2. Heatmap showing that is
possible to cluster nodes based on the
similarity of their measurements

1 with all others nodes. It is clear that even distant nodes have temperature correlated
with Node 1. In Figure 2, each circle of the grid means a group of sensor nodes put to-
gether based on the correlation of first 200 temperature measurements. The grid, created
by SOM algorithm [Kohonen 1998] gives the idea that nodes from different geographical
areas could fall in same clusters.

In fact, the authors in [Lemos et al. 2017] exploited that idea and presented
ACASIM, a clustering approach where the physical sensor nodes are clustered according
to their measurements similarity. And by selecting only a sub-set of sensor nodes from
each cluster, ACASIM could reduce energy consumption, while attending the applications
requirements. The clustering process is controlled by a error threshold, i.e., whenever the
measurements from a sensor nodes does not not fit its clusters anymore, ACASIM reorga-
nize all the clusters again. However, we argue that the reduction of energy consumption
could be improved if the algorithm first tries to reconstruct only the clusters whose mea-
surements are deviating from the pattern. Hence, we propose Akasen, Adaptive K-Means
Algorithm for Sensor Networks, for clustering sensor nodes in a WSN. Akasen uses K-
Means algorithm to group the nodes according the similarity of their measurements. The
value of K is find automatically according to a threshold parameter defined by the appli-
cation. And differently from ACASIM, Akasen tries first to reallocate the sensor nodes
whose measurements diviate from their clusters, before construct all clusters again.

The article is structured as follows: Section 2 discusses in more detail the oper-
ation of Akasen. Section 3 presents the performance evaluation of the proposed, while
Section 4 discusses the results. Finally, in Section 5, the conclusions are presented along
with some future research directions.

2. Adaptive K-Means Algorithm for Sensor Networks

The main goal of Akasen is to clusters sensor nodes based on the similarity of their mea-
surements. The clustering process guarantees that the correlation between the measure-
ments from each cluster are below an threshold parameter. In that sense, it not necessary
that all sensor nodes transmit their measurements anymore. As all values are correlated
and the sensor nodes are homogeneous, the sink node needs to receive the measurements
from one sensor node of each cluster, at least. This approach leads to a significant im-
provement in the energy consumption reduction. At any point in time, Akasen is in one
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of the following modes: configuration, training, and maintaining (Figure 4), which are
described next.

2.0.1. Configuration

Initially, it is necessary the configuration of three parameters: training-window,
initial _k, threshold, according Figure 4a. The training_window delimiters how many
measurements the sink nodes must receive, during the training mode in order to execute
K-Means algorithm, while initial _k and threshold are used by the training itself to adjust
the clusters formation, as explained later in this section. The values of these parameters is
a decision project and are based upon the nature of the measurements. After that, training
mode begins (4b).

2.0.2. Training

This step represents the main core of Akasen, since it is responsible for executing K-
Means to clusters sensor nodes. First, sink node must receive measurements sent from all
sensor nodes during a specific time-window, represented by training_window. Whether
more than one measurements from each node arrives, sink node aggregates them using a
average operation. The measurements are stored in a matrix X", where n > 0 represents
the values monitored by each sensor node and m > 1 corresponds to the sensors nodes in
the network. In sequence, K-Means algorithm is executed. Usually, the value of K, which
corresponds to the number of desired clusters, must be given a priori. However, is not
always easy to determine the best value. A traditional strategy to select K is to execute
K-Means repeated times and increment the value of K in each execution. The goal of
this procedure, named Elbow method [Jain 2010], is to find the K value that makes the
variance of the clusters falls below 0.2. The value 0.2 usually means an “elbow” in a scree
plot, as pointed out by Figure 3.

1.0

ratio_ss
02 04 06 08

Figure 3. Scree plot. The "elbow” (pointed out by the green arrow) represents
the point where adding another cluster does not produce better models.

The intuition is that below the “elbow”, the variance of the generated model slowly
decreases, i.e., adding another cluster does not produce better models. However, Akasen
does not use variance to control the value of K. Instead, it refines the clustering models
until a criterion is reached. Algorithm 1 shows how K-Means works.
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Data: initial_k, threshold, matrix

Result: Clusters

1 K = initial_k;

2 while True do

3 kmodel < kmeans(matrix, K);

4 clusters_over = exists_clusters_over_threshold(kmodel, threshold);
5 if clusters_over_threshold == False then
6 best_k + K;

7 best_model < kmodel;

8 break;

9 else

10 | K+ K+1;

11 end

12 end

Algorithm 1: K-Means

Initially, the K variable is configured with the initial, value (Line 1) and, in
sequence, the algorithm enters a loop (Line 2). Each loop iteration executes k-means with
the last K value and stores the model in kmodell variable (Line 3). Then Akasen executes
a function, named exists_clusters_over_threshold, which checks if some of the clusters (in
kmodel) contain at least one node whose euclidian distance between its measurements
and the center of the clusters is over threshold. In the case of T'rue, K is incremented,
and the process is repeated. Otherwise, Akasen has just found the best K value, and
the loop is broken down (after storing K and Amodel values). Then, Akasen selects
only one sensor node from each cluster and broadcast a special message, warning all
other sensor nodes to enter a low power state, along with the coefficients of a linear
model which represents the measurements of each node, according to the strategy used
in [Lemos et al. 2017]. These linear models will be used during Maintaining mode. All
these procedures are depicted in 4b. Then, it begins the maintaining mode.

2.0.3. Maintaining

As each cluster contains only node whose measurements are close to each other (based
on threshold value), it does no matter if the distance between the sensor nodes is small
or not; the selected nodes can represent all other nodes from their clusters. Moreover,
as only one node is selected, the overall energy consumption of the WSN is reduced.
However, it can happen that the measurements from some sensors nodes start to deviate
from the pattern of their clusters. In that case, Akasen should reconstruct the clusters.
Therefore, in maintaining mode, each sensor node not transmitting checks the status of
its measurements. Whether the absolute error between the new measurements and the
measurement predicted by the linear model is bigger than threshold, the sensor nodes
send a message to sink node, along with its new measurements. Before executing K-
Means again, sink node verifies if that sensor node can be reallocated to another cluster.
In the case of success, sink node generates a new linear model and send back to the sensor
node. However, if the reallocation process fails, K-Means is executed again (4c).

364



Anais Eletronicos ENUCOMP 2017 - X Encontro Unificado de Computag@o - www.enucomp.com.br/2017 - ISBN: 978-85-8320-201-1

AKASEN
A. Configuration B. Training C. Maintaining

g read neat

< vt et
i fram sach node '
VES
read

next .
TRAINNG_WNDOW
[r=asiire ments ffom each
node ' and cakculate e
mean

Set thrashold

o

dlestioy old taater
if confains 0 nodes)

.

4;{ rcuty k-meam
Set it ulua] ; =
Y
es Can node i be put in
A5 c ~clusters aver ol
training made =-1'Ii|l4— k=k+1 threshold?. > S8

=

Seve Best Mol

extract clusters and hnear
L tranng_mode = Falie matels mn;nd 1y sensar
les

Figure 4. Akasen

3. Performance Evaluation

Akasen have been evaluated based on real data obtained from the Intel project, Berke-
ley Lab Data?, as it is publicly available and used by several works on literature
[Gielow et al. 2015, Carvalho et al. 2011, Jiang et al. 2011]. The dataset consists of the
measurements of 54 sensor nodes measured every 31 seconds between 28 February and 4
April 2004. However, the nodes do not have the same number of measurements (possibly
due to errors or failures in the sensor-reading process). Therefore, to properly evaluate
the performance of the simulations, the first 5,000 measurements were taken (correspond-
ing approximately to the measurements of the first day). The original dataset contains
missing values, which were interpolated with the average of the values from the previ-
ous and subsequent measurements. The results described here have been produced by
simulations performed with R? language. Akasen was compared with LEACH protocol
[Heinzelman et al. 2000]. In the LEACH protocol, only cluster heads communicate with
the sink node, and each sensor node has probability I” of being elected cluster head. The
cluster heads receive all measurements from nodes in their clusters and generate an aggre-
gate value from them. In this work, the mean is considered as the aggregation function.
The single-hop (direct) communication [Meghji 2011] was used as a benchmark case. In
the single-hop communication, each node transmits its measurements directly to the sink
node.

The mean squared error (MSE) and energy consumption were chosen to evaluate

2http://db.csail.mit.edu/labdata/labdata.html
Shttp://www.r-project.org/
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Akasen properly. As the created clusters may include sensor nodes not physically close to
each other, MSE helps to investigate how reliable is the measurements sent by the selected
sensors, 1.e., how they can be representative of multiple regions. The energy consumptions
measures how well Akasen selects the sensor nodes in order to save energy. The models
(from both metrics) defined in [Lemos et al. 2017] were used.

4. Results and Discussion

4.1. LEACH protocol results

In LEACH protocol, every node has a probability P of being selected as a cluster head.
For this reason, it was simulated eight scenarios with different values of P. The values of
P considered were 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Table 1 shows the results in
the eight scenarios. Considering the table, MSE is closely correlated with the value of P,
which was expected since, in the LEACH protocol, the clusters are based on the nodes’
proximity (based on physical distance).

Small values of I” mean that few cluster heads are selected. In this case, the MSE
is higher since each cluster may contain nodes with measurements significantly different
from each other. As the value of P increases, the number of cluster heads increases as
well. Hence, the MSE decreases because the clusters contain more nodes close to each
other (based on physical distance).

Regarding energy consumption savings (in compare with single-hop communica-
tion), as the value of P increases, more nodes are selected as cluster heads, which boosts
the number of transmissions inside the network. Consequently, the energy consumption
savings decrease. As the value of P approaches 1, the energy consumption of LEACH
becomes more similar to the single-hop communication.

4.2. Akasen results

Akasen was simulated in eight different scenarios with the following THRESHOLD
values: 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 4.0, and 6.0. Table 2 shows the results in the eight sce-
narios simulated. It is possible to see a positive correlation between the T'TH RESHOLD
and the energy consumption savings; i.e., as the I'H RE.S HO LD value increases, the per-
centage of energy consumption savings also increase. This is because high values of that
parameter generate fewer clusters, and each cluster contains a large number of nodes. As
only one node responds, the energy consumption decreases. However, regarding M SFE,
there is an increasing tendency as the value of THRESHOLD rises.

4.3. Comparing the results of LEACH and ACOSIM

The highest value of MSE in Akasen (7.68) is about 3.7x lower than highest value of
MSE in LEACH scenarios (28.72). Considering these same scenarios, energy savings of
LEACH is slightly superior (about 1.5x). It is important to stress that these is just the
scenarios with highest energy savings in both solutions. However, a MSE equals to 28.72
makes LEACH, with P = 0.2, infeasible for WSN applications. Considering Node 18,
Figure 5 shows the absolute error between the transmitted values from the nodes’ clusters
and its real measured values during the simulations in the scenarios with P = 0.2. From
theses results, it is possible to see that the error falls beyond 5 °C in most of the time.
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Figure 5. Absolut error in LEACH scenarios with P equals to 0.2

In Akasen, the highest value of M SFE is 7.68 (when TTHRESHOLD = 6), which
is about 3 x worse than the lowest M .SE for the LEACH protocol (MSE = 2.09 when
P = 0.9). However, with this same configuration, the energy consumption reduction of
ACOSIM is 53.92%, which is about 5.5 x better than LEACH protocol with P = 0.9 (the
scenario with the lowest MSE), where the percentage energy savings value is 9.80%.

Table 1. LEACH results Table 2. Akasen results

Thr. | Energy (mJ) | Sav.(%) | MSE
0.1 130, 604.90 0.005 | 0.013
0.3 130, 461.50 0.115 | 0.086
0.5 130, 287.10 0.24| 0.14

P | Energy (mJ) | Sav.(%) | MSE
0.2 26,227.10 79.91 | 28.72
0.3 39, 334.82 69.88 | 22.83
0.4 52,422.89 59.86 | 18.06

1.0 90, 532.30 253 | 048
0.5 65, 567.48 49.80 | 13.98 ’

2.0 70, 338.40 13.10 | 1.87
0.6 78,544.14 39.86 | 10.39

3.0 60, 688.79 29.02 | 3.89
0.7 91, 599.68 29.86 | 7.26
0.8 | 104,681.71 19.85 | 4.50 10 55,551.39 38.33 | 5.03

6.0 30,679.35 53.92 | 7.68

0.9 117,804.67 9.80 | 2.09

5. Conclusions and Future Works

This paper presented Akasen, an algorithm to clusters sensor nodes based on the simi-
larity of their measurements with the purpose of reducing energy consumption. Akasen
performs the clustering based on a modified version of K-Means which automatically
choose the value of K considering a threshold parameter. This approach leads to group
together sensor nodes not close physically (based on the physical distance), as traditional
works on literature do. However, since the measurements are correlated, according to an
threshold parameter, sink node may select only few sensor nodes from each cluster in or-
der to transmit its measurements, while the others may change their states to a low-power
mode operation. Hence, there is an improvement in the overall energy reduction of the
WSN.

Simulations have shown that Akasen, compared to LEACH protocol, has better
performance regarding energy consumption (about 5.5 x %) and MSE (3.7 %), indicating
the feasibility of the proposed algorithm. As future work, we intend to: (i) perform
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simulations in more complex environments, taking into account other variables such as
the routing protocol, (ii) compare Akasen with moderns clustering algorithms, including
ACASIM, and (iii) develop an algorithm to perform the optimal selection of sensor nodes
that will transmit the measurements.
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